Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels PW Jones, M Maggioni, R Schul Proceedings of the National Academy of Sciences 105 (6), 1803-1808, 2008 | 200 | 2008 |

Subsets of rectifiable curves in Hilbert space-the analyst’s TSP R Schul Journal d'Analyse Mathématique 103 (1), 331-375, 2007 | 98 | 2007 |

Universal local parametrizations via heat kernels and eigenfunctions of the laplacian PW Jones, M Maggioni, R Schul Ann. Acad. Sci. Fenn. Math 35 (1), 131-174., 2010 | 58 | 2010 |

An analyst’s traveling salesman theorem for sets of dimension larger than one J Azzam, R Schul Mathematische Annalen 370 (3), 1389-1476, 2018 | 49 | 2018 |

Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps J Azzam, R Schul Geometric and Functional Analysis 22 (5), 1062-1123, 2012 | 47 | 2012 |

A doubling measure on Rd can charge a rectifiable curve JB Garnett, R Killip, R Schul Proceedings of the American Mathematical Society 138 (5), 1673-1679, 2010 | 44 | 2010 |

The traveling salesman problem in the Heisenberg group: upper bounding curvature S Li, R Schul Transactions of the American Mathematical Society 368 (7), 4585-4620, 2016 | 42 | 2016 |

Multiscale analysis of 1-rectifiable measures II: Characterizations M Badger, R Schul Analysis and Geometry in Metric Spaces 5 (1), 1-39, 2017 | 40 | 2017 |

Multiscale analysis of 1-rectifiable measures: necessary conditions M Badger, R Schul Mathematische Annalen 361 (3), 1055-1072, 2015 | 39 | 2015 |

Ahlfors-regular curves in metric spaces R Schul Annales Academiae scientarum Fennicae. Mathematica 32 (2), 437-460, 2007 | 39 | 2007 |

An upper bound for the length of a Traveling Salesman path in the Heisenberg group S Li, R Schul Revista Matemática Iberoamericana; arXiv:1403.3951, 2014 | 35 | 2014 |

Two sufficient conditions for rectifiable measures M Badger, R Schul Proceedings of the Amer. Math. Soc, 2014 | 34 | 2014 |

Analyst's traveling salesman theorems. A survey R Schul Contemporary Mathematics 432, 209, 2007 | 31 | 2007 |

Bi-Lipschitz decomposition of Lipschitz functions into a metric space R Schul | 24 | 2009 |

The analyst's traveling salesman theorem in graph inverse limits GC David, R Schul arXiv preprint arXiv:1603.03077, 2016 | 23 | 2016 |

A sharp necessary condition for rectifiable curves in metric spaces GC David, R Schul Revista Matemática Iberoamericana 37 (3), 1007-1044, 2020 | 19 | 2020 |

A quantitative metric differentiation theorem J Azzam, R Schul Proceedings of the American Mathematical Society 142 (4), 1351-1357, 2014 | 14 | 2014 |

How to take shortcuts in Euclidean space: making a given set into a short quasi‐convex set J Azzam, R Schul Proceedings of the London Mathematical Society 105 (2), 367-392, 2012 | 11 | 2012 |

Quantitative decompositions of Lipschitz mappings into metric spaces G David, R Schul Transactions of the American Mathematical Society 376 (08), 5521-5571, 2023 | 7 | 2023 |

Uniformly rectifiable metric spaces: Lipschitz images, bi-lateral weak geometric lemma and corona decompositions D Bate, M Hyde, R Schul arXiv preprint arXiv:2306.12933, 2023 | 7 | 2023 |