Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations H Lee, R Grosse, R Ranganath, AY Ng Proceedings of the 26th annual international conference on machine learning …, 2009 | 3335 | 2009 |
Black box variational inference R Ranganath, S Gerrish, D Blei Artificial intelligence and statistics, 814-822, 2014 | 1156 | 2014 |
Automatic differentiation variational inference A Kucukelbir, D Tran, R Ranganath, A Gelman, DM Blei Journal of machine learning research, 2017 | 723 | 2017 |
Clinicalbert: Modeling clinical notes and predicting hospital readmission K Huang, J Altosaar, R Ranganath arXiv preprint arXiv:1904.05342, 2019 | 507 | 2019 |
Unsupervised learning of hierarchical representations with convolutional deep belief networks H Lee, R Grosse, R Ranganath, AY Ng Communications of the ACM 54 (10), 95-103, 2011 | 473 | 2011 |
Hierarchical variational models R Ranganath, D Tran, D Blei International conference on machine learning, 324-333, 2016 | 332 | 2016 |
Hierarchical implicit models and likelihood-free variational inference D Tran, R Ranganath, D Blei Advances in Neural Information Processing Systems 30, 2017 | 323* | 2017 |
Backprop kf: Learning discriminative deterministic state estimators T Haarnoja, A Ajay, S Levine, P Abbeel Advances in neural information processing systems 29, 2016 | 311* | 2016 |
Automatic variational inference in Stan A Kucukelbir, R Ranganath, A Gelman, D Blei Advances in neural information processing systems 28, 2015 | 272 | 2015 |
Variational sequential monte carlo C Naesseth, S Linderman, R Ranganath, D Blei International conference on artificial intelligence and statistics, 968-977, 2018 | 201 | 2018 |
Deep survival analysis R Ranganath, A Perotte, N Elhadad, D Blei Machine Learning for Healthcare Conference, 101-114, 2016 | 197 | 2016 |
A review of challenges and opportunities in machine learning for health M Ghassemi, T Naumann, P Schulam, AL Beam, IY Chen, R Ranganath AMIA Summits on Translational Science Proceedings 2020, 191, 2020 | 187 | 2020 |
The variational Gaussian process D Tran, R Ranganath, DM Blei arXiv preprint arXiv:1511.06499, 2015 | 185 | 2015 |
The variational Gaussian process D Tran, R Ranganath, DM Blei arXiv preprint arXiv:1511.06499, 2015 | 185 | 2015 |
Variational Inference via Upper Bound Minimization AB Dieng, D Tran, R Ranganath, J Paisley, D Blei Advances in Neural Information Processing Systems 30, 2017 | 156 | 2017 |
Deep exponential families R Ranganath, L Tang, L Charlin, D Blei Artificial Intelligence and Statistics, 762-771, 2015 | 148 | 2015 |
Support and invertibility in domain-invariant representations FD Johansson, D Sontag, R Ranganath arXiv preprint arXiv:1903.03448, 2019 | 146 | 2019 |
Extracting social meaning: Identifying interactional style in spoken conversation D Jurafsky, R Ranganath, D McFarland Proceedings of Human Language Technologies: The 2009 Annual Conference of …, 2009 | 138 | 2009 |
Bayesian nonparametric poisson factorization for recommendation systems P Gopalan, FJ Ruiz, R Ranganath, D Blei Artificial Intelligence and Statistics, 275-283, 2014 | 126 | 2014 |
An adaptive learning rate for stochastic variational inference R Ranganath, C Wang, B David, E Xing International Conference on Machine Learning, 298-306, 2013 | 119 | 2013 |