An attentive survey of attention models S Chaudhari, V Mithal, G Polatkan, R Ramanath ACM Transactions on Intelligent Systems and Technology (TIST) 12 (5), 1-32, 2021 | 511 | 2021 |
Deep learning with hierarchical convolutional factor analysis B Chen, G Polatkan, G Sapiro, D Blei, D Dunson, L Carin IEEE transactions on pattern analysis and machine intelligence 35 (8), 1887-1901, 2013 | 134 | 2013 |
A Bayesian nonparametric approach to image super-resolution G Polatkan, M Zhou, L Carin, D Blei, I Daubechies IEEE transactions on pattern analysis and machine intelligence 37 (2), 346-358, 2014 | 99 | 2014 |
Detection of forgery in paintings using supervised learning G Polatkan, S Jafarpour, A Brasoveanu, S Hughes, I Daubechies 2009 16th IEEE International Conference on Image Processing (ICIP), 2921-2924, 2009 | 87 | 2009 |
Stylistic analysis of paintings usingwavelets and machine learning S Jafarpour, G Polatkan, E Brevdo, S Hughes, A Brasoveanu, ... 2009 17th european signal processing conference, 1220-1224, 2009 | 59 | 2009 |
The hierarchical beta process for convolutional factor analysis and deep learning B Chen, G Polatkan, G Sapiro, L Carin, DB Dunson Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011 | 49 | 2011 |
Towards deep and representation learning for talent search at linkedin R Ramanath, H Inan, G Polatkan, B Hu, Q Guo, C Ozcaglar, X Wu, ... Proceedings of the 27th ACM International Conference on Information and …, 2018 | 44 | 2018 |
Dependence of cooperative vehicle system performance on market penetration SE Shladover, G Polatkan, R Sengupta, J VanderWerf, M Ergen, ... Transportation Research Record 2000 (1), 121-127, 2007 | 26 | 2007 |
An attentive survey of attention models. arXiv 2019 S Chaudhari, G Polatkan, R Ramanath, V Mithal arXiv preprint arXiv:1904.02874, 0 | 17 | |
Social media data mining and analytics G Szabo, G Polatkan, PO Boykin, A Chalkiopoulos John Wiley & Sons, 2018 | 15 | 2018 |
Object detecting with 1D range sensors CO Tuzel, G Polatkan US Patent 8,824,548, 2014 | 10 | 2014 |
Painting analysis using wavelets and probabilistic topic models T Wu, G Polatkan, D Steel, W Brown, I Daubechies, R Calderbank 2013 IEEE International Conference on Image Processing, 3264-3268, 2013 | 10 | 2013 |
Learning to be relevant: evolution of a course recommendation system S Rao, K Salomatin, G Polatkan, M Joshi, S Chaudhari, V Tcheprasov, ... Proceedings of the 28th ACM International Conference on Information and …, 2019 | 8 | 2019 |
Deep neural network architecture for search R Ramanath, G Polatkan, L Xu, B Hu, S Zhou, HH Lee US Patent App. 15/941,314, 2019 | 7 | 2019 |
Techniques for querying user profiles using neural networks R Ramanath, G Polatkan, Q Guo, C Ozcaglar, K Kenthapadi, SC Geyik US Patent 10,795,897, 2020 | 6 | 2020 |
Lambda Learner: Fast Incremental Learning on Data Streams R Ramanath, K Salomatin, JD Gee, K Talanine, O Dalal, G Polatkan, ... Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 5 | 2021 |
Recommendations using session relevance and incremental learning R Ramanath, K Salomatin, JD Gee, OA Dalal, G Polatkan, SS Gerrard, ... US Patent App. 16/912,245, 2021 | 4 | 2021 |
Feature generation pipeline for machine learning IICW Lloyd, K Salomatin, JD Gee, MS Joshi, S Rao, V Tcheprasov, ... US Patent 11,195,023, 2021 | 4 | 2021 |
Applying learning-to-rank for search R Ramanath, G Polatkan, Q Guo, C Ozcaglar, K Kenthapadi, SC Geyik US Patent App. 16/021,692, 2020 | 4 | 2020 |
Compressed inference for probabilistic sequential models G Polatkan, O Tuzel Uncertainty in Artificial Intelligence (UAI), 2011 Twenty-Seventh Annual …, 2011 | 4 | 2011 |