Global solutions for incompressible viscoelastic fluids Z Lei, C Liu, Y Zhou Archive for Rational Mechanics and Analysis 188 (3), 371-398, 2008 | 274 | 2008 |
Global classical solutions for general quasilinear hyperbolic systems with decay initial data L Ta-Tsien, Z Yi, K De-Xing Nonlinear Analysis: Theory, Methods & Applications 28 (8), 1299-1332, 1997 | 183* | 1997 |
BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity Z Lei, Y Zhou arXiv preprint arXiv:0901.2683, 2009 | 175 | 2009 |
BREAKDOWN OF SOLUTIONS TO Du+ ut=\ u\ TT Li, Y Zhou DYNAMICAL SYSTEMS 1 (4), 503-520, 1995 | 165* | 1995 |
Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit Z Lei, Y Zhou SIAM journal on mathematical analysis 37 (3), 797-814, 2005 | 155 | 2005 |
Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions* Y Zhou Chinese Annals of Mathematics, Series B 28 (2), 205-212, 2007 | 145 | 2007 |
Cauchy problem for semilinear wave equations in four space dimensions with small initial data Y Zhou J. Differential Equations 8, 135-144, 1995 | 131 | 1995 |
Remarks on the blowup criteria for Oldroyd models Z Lei, N Masmoudi, Y Zhou Journal of Differential Equations 248 (2), 328-341, 2010 | 119 | 2010 |
Blow up of solutions to the Cauchy problem for nonlinear wave equations Y Zhou Chinese Annals of Mathematics 22 (03), 275-280, 2001 | 106 | 2001 |
Life-span of solutions to critical semilinear wave equations Y Zhou, W Han Communications in Partial Differential Equations 39 (3), 439-451, 2014 | 82 | 2014 |
Blow-up of solutions to semilinear wave equations with variable coefficients and boundary Y Zhou, W Han Journal of Mathematical Analysis and Applications 374 (2), 585-601, 2011 | 81 | 2011 |
Global existence for a 2D incompressible viscoelastic model with small strain Z Lei, C Liu, Y Zhou Communications in Mathematical Sciences 5 (3), 595-616, 2007 | 81 | 2007 |
Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy Y Zhou Chinese Annals of Mathematics 25 (01), 37-56, 2004 | 79 | 2004 |
Blow up of classical solutions to□ u=| u| 1+ α in three space dimensions Y Zhou J. Partial Differential Equations 5 (3), 21-32, 1992 | 78 | 1992 |
Life-span of classical solutions to nonlinear wave equations in two space dimensions L Ta-Tsien, Z Yi Journal de mathématiques pures et appliquées 73 (3), 223-249, 1994 | 77* | 1994 |
Life-span of classical solutions to fully nonlinear wave equations—II L Ta-Tsien, Z Yi Nonlinear Analysis: Theory, Methods & Applications 19 (9), 833-853, 1992 | 76* | 1992 |
LIFE-SPAN OF CLASSICAL-SOLUTIONS TO SQUARE-U=/U/P IN 2 SPACE DIMENSIONS Y Zhou CHINESE ANNALS OF MATHEMATICS SERIES B 14 (2), 225-236, 1993 | 75* | 1993 |
On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles K Hidano, J Metcalfe, H Smith, C Sogge, Y Zhou Transactions of the American Mathematical Society 362 (5), 2789-2809, 2010 | 71 | 2010 |
Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems L Ta-Tsien, Z Yi, K De-Xing Communications in partial differential equations 19 (7-8), 1263-1317, 1994 | 69* | 1994 |
Almost global existence for 2-D incompressible isotropic elastodynamics Z Lei, T Sideris, Y Zhou Transactions of the American Mathematical Society, 2015 | 62 | 2015 |