Tensorflow: Large-scale machine learning on heterogeneous distributed systems M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467, 2016 | 28474 | 2016 |
{TensorFlow}: a system for {Large-Scale} machine learning M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 22215 | 2016 |
TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow. org (2015) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... URL https://www. tensorflow. org, 2015 | 728 | 2015 |
Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 557 | 2021 |
Fine-tuning language models from human preferences DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ... arXiv preprint arXiv:1909.08593, 2019 | 524 | 2019 |
Invertible finite elements for robust simulation of large deformation G Irving, J Teran, R Fedkiw Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer …, 2004 | 506 | 2004 |
Improving language models by retrieving from trillions of tokens S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ... International conference on machine learning, 2206-2240, 2022 | 405 | 2022 |
Ethical and social risks of harm from language models L Weidinger, J Mellor, M Rauh, C Griffin, J Uesato, PS Huang, M Cheng, ... arXiv preprint arXiv:2112.04359, 2021 | 388 | 2021 |
TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2015 M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... URL http://download. tensorflow. org/paper/whitepaper2015. pdf, 12, 2015 | 375 | 2015 |
Robust quasistatic finite elements and flesh simulation J Teran, E Sifakis, G Irving, R Fedkiw Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer …, 2005 | 269 | 2005 |
Reward learning from human preferences and demonstrations in atari B Ibarz, J Leike, T Pohlen, G Irving, S Legg, D Amodei Advances in neural information processing systems 31, 2018 | 268 | 2018 |
TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow. org M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... URL https://www. tensorflow. org, 2019 | 253 | 2019 |
12th USENIX symposium on operating systems design and implementation (OSDI 16) M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... Savannah, GA, 265-283, 2016 | 244 | 2016 |
Efficient simulation of large bodies of water by coupling two and three dimensional techniques G Irving, E Guendelman, F Losasso, R Fedkiw ACM SIGGRAPH 2006 Papers, 805-811, 2006 | 228 | 2006 |
Taxonomy of risks posed by language models L Weidinger, J Uesato, M Rauh, C Griffin, PS Huang, J Mellor, A Glaese, ... Proceedings of the 2022 ACM Conference on Fairness, Accountability, and …, 2022 | 180 | 2022 |
A quantized-diffusion model for rendering translucent materials E d'Eon, G Irving ACM transactions on graphics (TOG) 30 (4), 1-14, 2011 | 180 | 2011 |
Deep network guided proof search S Loos, G Irving, C Szegedy, C Kaliszyk arXiv preprint arXiv:1701.06972, 2017 | 178 | 2017 |
Hybrid simulation of deformable solids E Sifakis, T Shinar, G Irving, R Fedkiw Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer …, 2007 | 173 | 2007 |
Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction A Selle, J Su, G Irving, R Fedkiw IEEE transactions on visualization and computer graphics 15 (2), 339-350, 2008 | 171 | 2008 |
Tensorflow: A system for large-scale machine learning PB Mart'in Abadi, J Chen, Z Chen, A Davis, J Dean, M Devin, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 170 | 2016 |