Global well-posedness of the Benjamin–Ono equation in low-regularity spaces A Ionescu, C Kenig Journal of the American Mathematical Society 20 (3), 753-798, 2007 | 256 | 2007 |

Global solutions for the gravity water waves system in 2d AD Ionescu, F Pusateri Inventiones Mathematicae 199 (3), 653-804, 2015 | 224 | 2015 |

Nonlinear fractional Schrödinger equations in one dimension AD Ionescu, F Pusateri Journal of Functional Analysis 266 (1), 139-176, 2014 | 210 | 2014 |

Global Schrödinger maps in dimensions d≥ 2: small data in the critical Sobolev spaces I Bejenaru, AD Ionescu, CE Kenig, D Tataru Annals of Mathematics (2) 173 (3), 1443-1506, 2011 | 166* | 2011 |

Global well-posedness of the KP-I initial-value problem in the energy space AD Ionescu, CE Kenig, D Tataru Inventiones Mathematicae 173 (2), 265-304, 2008 | 155 | 2008 |

On the absence of positive eigenvalues of Schrödinger operators with rough potentials AD Ionescu, D Jerison Geometric and Functional Analysis 13, 1029-1081, 2003 | 121 | 2003 |

Global solutions of the Euler-Maxwell two-fluid system in 3D Y Guo, AD Ionescu, B Pausader Annals of Mathematics (2) 183 (2), 377-498, 2016 | 113* | 2016 |

Global regularity for 2D water waves with surface tension. A Ionescu, F Pusateri Memoirs of the American Mathematical Society 256 (1227), v+124 pp, 2018 | 111* | 2018 |

Global solutions of the gravity-capillary water-wave system in three dimensions Y Deng, AD Ionescu, B Pausader, F Pusateri Acta Mathematica 219 (2), 213-402, 2017 | 106 | 2017 |

Inviscid damping near the Couette flow in a channel AD Ionescu, H Jia Communications in Mathematical Physics 374 (3), 2015-2096, 2020 | 97* | 2020 |

On the uniqueness of smooth, stationary black holes in vacuum AD Ionescu, S Klainerman Inventiones Mathematicae 175 (1), 35-102, 2009 | 95 | 2009 |

The Euler–Poisson system in 2D: global stability of the constant equilibrium solution AD Ionescu, B Pausader International Mathematics Research Notices 2013 (4), 761-826, 2013 | 94 | 2013 |

Low-regularity Schrödinger maps. II. Global well-posedness in dimensions d≥3 AD Ionescu, CE Kenig Communications in Mathematical Physics 271 (2), 523-559, 2007 | 91 | 2007 |

The energy-critical defocusing NLS on T^3 AD Ionescu, B Pausader Duke Mathematical Journal 161 (8), 1581-1612, 2012 | 89 | 2012 |

Sobolev spaces on Lie manifolds and regularity for polyhedral domains B Ammann, AD Ionescu, V Nistor Documenta Mathematica 11, 161-206, 2006 | 89 | 2006 |

Global well-posedness of the energy-critical defocusing NLS on AD Ionescu, B Pausader Communications in Mathematical Physics 312 (3), 781-831, 2012 | 83 | 2012 |

Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces S Alexakis, AD Ionescu, S Klainerman Communications in Mathematical Physics 299, 89-127, 2010 | 83 | 2010 |

Global solutions of quasilinear systems of Klein–Gordon equations in 3D AD Ionescu, B Pausader Journal of the European Mathematical Society 16 (11), 2355-2431, 2014 | 80 | 2014 |

𝐿^{𝑝} boundedness of discrete singular Radon transforms A Ionescu, S Wainger Journal of the American Mathematical Society 19 (2), 357-383, 2006 | 80 | 2006 |

On the global well-posedness of energy-critical Schrödinger equations in curved spaces A Ionescu, B Pausader, G Staffilani Analysis & PDE 5 (4), 705-746, 2012 | 77 | 2012 |