Follow
Nigel Grindley
Nigel Grindley
Verified email at yale.edu
Title
Cited by
Cited by
Year
Mechanisms of site-specific recombination
NDF Grindley, KL Whiteson, PA Rice
Annu. Rev. Biochem. 75, 567-605, 2006
9312006
Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli.
AH Polesky, TA Steitz, ND Grindley, CM Joyce
Journal of Biological Chemistry 265 (24), 14579-14591, 1990
3301990
The 3′‐5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.
V Derbyshire, ND Grindley, CM Joyce
The EMBO Journal 10 (1), 17-24, 1991
3281991
Transpositional recombination in prokaryotes
NDF Grindley, RR Reed
Annual review of biochemistry 54 (1), 863-896, 1985
3001985
Conformational transitions in DNA polymerase I revealed by single-molecule FRET
Y Santoso, CM Joyce, O Potapova, L Le Reste, J Hohlbein, JP Torella, ...
Proceedings of the National Academy of Sciences 107 (2), 715-720, 2010
2982010
Method for determining whether a gene of Escherichia coli is essential: application to the polA gene
CM Joyce, ND Grindley
Journal of bacteriology 158 (2), 636-643, 1984
2911984
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
M Astatke, K Ng, NDF Grindley, CM Joyce
Proceedings of the National Academy of Sciences 95 (7), 3402-3407, 1998
2741998
Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site
RR Reed, NDF Grindley
Cell 25 (3), 721-728, 1981
2341981
Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli.
AH Polesky, ME Dahlberg, SJ Benkovic, ND Grindley, CM Joyce
Journal of Biological Chemistry 267 (12), 8417-8428, 1992
2301992
Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli.
CM Joyce, ND Grindley
Proceedings of the National Academy of Sciences 80 (7), 1830-1834, 1983
2291983
Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I.
CM Joyce, WS Kelley, ND Grindley
Journal of Biological Chemistry 257 (4), 1958-1964, 1982
2051982
Molecular studies of R factor compatibility groups
NDF Grindley, GO Humphreys, ES Anderson
Journal of Bacteriology 115 (1), 387-398, 1973
1951973
Transposon-mediated site-specific recombination: Identification of three binding sites for resolvase at the res sites of γδ and Tn 3
NDF Grindley, MR Lauth, RG Wells, RJ Wityk, JJ Salvo, RR Reed
Cell 30 (1), 19-27, 1982
1861982
Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.
ND Grindley, CM Joyce
Proceedings of the National Academy of Sciences 77 (12), 7176-7180, 1980
1851980
IS1 insertion generates duplication of a nine base pair sequence at its target site
NDF Grindley
Cell 13 (3), 419-426, 1978
1831978
Sequence analysis at IS1 insertion sites: models for transposition
NDF Grindley, DJ Sherratt
Cold Spring Harbor Symposia on Quantitative Biology 43, 1257-1261, 1979
1811979
The Movement of Tn 3 ‐Like Elements: Transposition and Cointegrate Resolution
NDF Grindley
Mobile DNA II, 272-302, 2007
1682007
How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy-and dideoxynucleotides
M Astatke, NDF Grindley, CM Joyce
Journal of molecular biology 278 (1), 147-165, 1998
1671998
Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment)
V Purohit, NDF Grindley, CM Joyce
Biochemistry 42 (34), 10200-10211, 2003
1632003
Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity
CM Joyce, O Potapova, AM DeLucia, X Huang, VP Basu, NDF Grindley
Biochemistry 47 (23), 6103-6116, 2008
1612008
The system can't perform the operation now. Try again later.
Articles 1–20