James Gill
James Gill
Associate Professor of Mathematics, Saint Louis University
Verified email at
Cited by
Cited by
Optimal regularity for planar mappings of finite distortion
K Astala, JT Gill, S Rohde, E Saksman
Annales de l'IHP Analyse non linéaire 27 (1), 1-19, 2010
On the Riemann surface type of random planar maps
JT Gill, S Rohde
Revista Mathematica Iberoamericana 39 (3), 1071-1090, 2011
Geometric analysis on Cantor sets and trees
A Björn, J Björn, JT Gill, N Shanmugalingam
Journal für die reine und angewandte Mathematik (Crelles Journal) 2017 (725 …, 2017
Integrability of derivatives of inverses of maps of exponentially integrable distortion in the plane
JT Gill
Journal of mathematical analysis and applications 352 (2), 762-766, 2009
Quasisymmetry and rectifiability of quasispheres
M Badger, J Gill, S Rohde, T Toro
Transactions of the American Mathematical Society 366 (3), 1413-1431, 2014
Asymptotic behavior of 𝐵𝑉 functions and sets of finite perimeter in metric measure spaces
S Eriksson-Bique, J Gill, P Lahti, N Shanmugalingam
Transactions of the American Mathematical Society 374 (11), 8201-8247, 2021
Planar maps of sub-exponential distortion
JT Gill
Annales Fennici Mathematici 35 (1), 197-207, 2010
Discrete approximations of metric measure spaces of controlled geometry
JT Gill, M Lopez
Journal of Mathematical Analysis and Applications 431 (1), 73-98, 2015
Doubling metric spaces are characterized by a lemma of Benjamini and Schramm
JT Gill
Proceedings of the American Mathematical Society, 4291-4295, 2014
On the Beurling-Ahlfors transform’s weak-type constant
JT Gill
Michigan Math. J 59 (2), 353-363, 2010
A note on quasiconformal maps with Hölder-continuous dilatation
JT Gill, S Rohde
Journal de Mathématiques Pures et Appliquées 103 (1), 291-302, 2015
Existence of quasiconformal maps with maximal stretching on any given countable set
T Bongers, JT Gill
Computational Methods and Function Theory 23 (2), 369-380, 2023
Functions of finite distortion in the plane and a lower bound for the weak-type constant of the Beurling-Ahlfors transform
JT Gill
Washington University in St. Louis, 2009
The system can't perform the operation now. Try again later.
Articles 1–13