An inverse source problem for a one-dimensional space–time fractional diffusion equation S Tatar, S Ulusoy Applicable Analysis 94 (11), 2233-2244, 2015 | 93 | 2015 |
Determination of an unknown source term in a space-time fractional diffusion equation S Tatar, R Tinaztepe, S Ulusoy J. Fract. Calc. Appl 6 (1), 83-90, 2015 | 54 | 2015 |
A duality approach to the fractional Laplacian with measure data KH Karlsen, F Petitta, S Ulusoy | 54 | 2011 |
Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation SI Tatar, R Tınaztepe, S Ulusoy Applicable Analysis 95 (1), 1-23, 2016 | 52 | 2016 |
A uniqueness result for an inverse problem in a space-time fractional diffusion equation S Tatar, S Ulusoy Electron. J. Differ. Equ 257, 1-9, 2013 | 51 | 2013 |
Asymptotic equipartition and long time behavior of solutions of a thin-film equation EA Carlen, S Ulusoy Journal of Differential Equations 241 (2), 279-292, 2007 | 37 | 2007 |
An entropy dissipation-entropy estimate for a thin film type equation EA Carlen, S Ulusoy | 30 | 2005 |
Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations KH Karlsen, S Ulusoy arXiv preprint arXiv:0902.0538, 2009 | 27 | 2009 |
An inverse problem for a nonlinear diffusion equation with time-fractional derivative S Tatar, S Ulusoy Journal of Inverse and Ill-posed Problems 25 (2), 185-193, 2017 | 20 | 2017 |
Error estimates for deep learning methods in fluid dynamics A Biswas, J Tian, S Ulusoy Numerische Mathematik 151 (3), 753-777, 2022 | 19 | 2022 |
A new perturb and observe MPPT algorithm based on two steps variable voltage control SU H. Attia International Journal of Power Electronics and Drive Systems 12 (4), 2201-2208, 2021 | 17 | 2021 |
Simultaneous inversion for the fractional exponents in the space-time fractional diffusion equation N Guerngar, E Nane, R Tinaztepe, S Ulusoy, HW Van Wyk Fractional Calculus and Applied Analysis 24 (3), 818-847, 2021 | 14 | 2021 |
Localization, smoothness, and convergence to equilibrium for a thin film equation EA Carlen, S üleyman Ulusoy Discrete and Continuous Dynamical Systems 34 (11), 4537-4553, 2014 | 14 | 2014 |
Limiting Gibbs measures of the q-state Potts model with competing interactions H Akın, S Ulusoy Physica B: Condensed Matter 640, 413944, 2022 | 13 | 2022 |
Existence and uniqueness for a nonlinear inverse reaction‐diffusion problem with a nonlinear source in higher dimensions FT Akyildiz, S Tatar, S Ulusoy Mathematical Methods in the Applied Sciences 36 (17), 2397-2402, 2013 | 13 | 2013 |
Analysis of direct and inverse problems for a fractional elastoplasticity model S Tatar, S Ulusoy Filomat 31 (3), 699-708, 2017 | 12 | 2017 |
A new family of higher order nonlinear degenerate parabolic equations S Ulusoy Nonlinearity 20 (3), 685, 2007 | 12 | 2007 |
On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion KH Karlsen, S üleyman Ulusoy Networks and Heterogeneous Media 11 (1), 181-201, 2015 | 8 | 2015 |
Identification of the density dependent coefficient in an inverse reaction-diffusion problem from a single boundary data R Tinaztepe, S Tatar, S Ulusoy Electronic Journal of Differential Equations 2014 (21), 1-14, 2014 | 6 | 2014 |
Global attractors for quasilinear parabolic–hyperbolic equations governing longitudinal motions of nonlinearly viscoelastic rods SS Antman, S Ulusoy Physica D: Nonlinear Phenomena 291, 31-44, 2015 | 5 | 2015 |